Statistics and Machine Learning Techniques for Real End-User Experience
ثبت نشده
چکیده
Real End-User Experience (RUE) is a monitoring approach that aims to measure the end-user experience by providing information on availability, response time, and reliability of the real used IT services. The response time of each user transaction is measured by an analysis of the network communication flows. Several performance metrics get archived to monitor RUE over time. An abstract, generalized view of performance over time is of advantage before digging into data. We explored how advanced statistics and machine learning techniques can be used as effective tools to bring registered data to the desired level of abstraction. The resulting high-level visualizations help to get the big picture of what is happening within a network under investigation and improve our understanding of application performance
منابع مشابه
Statistics and Machine Learning Techniques for Real End-User Experience - Use Case
Let us study the SAP-traffic of a single subnet of a big company network. Intervention on some of the networking infrastructure is planned in the near future so the goal of the study is to monitor performance before, during, and after the intervention to understand the real end-user experience during all three stages of interest. A glimpse at classical statistics at query level of all three sta...
متن کاملTrust Classification in Social Networks Using Combined Machine Learning Algorithms and Fuzzy Logic
Social networks have become the main infrastructure of today’s daily activities of people during the last decade. In these networks, users interact with each other, share their interests on resources and present their opinions about these resources or spread their information. Since each user has a limited knowledge of other users and most of them are anonymous, the trust factor plays an import...
متن کاملMachine Learning and Citizen Science: Opportunities and Challenges of Human-Computer Interaction
Background and Aim: In processing large data, scientists have to perform the tedious task of analyzing hefty bulk of data. Machine learning techniques are a potential solution to this problem. In citizen science, human and artificial intelligence may be unified to facilitate this effort. Considering the ambiguities in machine performance and management of user-generated data, this paper aims to...
متن کاملEfficient Private Statistics with Succinct Sketches
Large-scale collection of contextual information is often essential in order to gather statistics, train machine learning models, and extract knowledge from data. The ability to do so in a privacy-preserving way – i.e., without collecting finegrained user data – enables a number of additional computational scenarios that would be hard, or outright impossible, to realize without strong privacy g...
متن کاملImproving the performance of recommender systems in the face of the cold start problem by analyzing user behavior on social network
The goal of recommender system is to provide desired items for users. One of the main challenges affecting the performance of recommendation systems is the cold-start problem that is occurred as a result of lack of information about a user/item. In this article, first we will present an approach, uses social streams such as Twitter to create a behavioral profile, then user profiles are clusteri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015